Dataset

NequIP_NC_2022




Species content of dataset


Dataset viewer powered by Hugging Face

Name NequIP_NC_2022
Extended ID NequIP_NC_2022__Batzner-Musaelian-Sun-Geiger-Mailoa-Kornbluth-Molinari-Smidt-Kozinsky__DS_4pbhjtu62o2d_0
Description Approximately 57,000 configurations from the evaluation datasets for NequIP graph neural network model for interatomic potentials. Trajectories have been taken from LIPS, LIPO glass melt-quench simulation, and formate decomposition on Cu datasets.
Authors Simon Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
Jonathan P. Mailoa
Mordechai Kornbluth
Nicola Molinari
Tess E. Smidt
Boris Kozinsky
DOI 10.60732/e05d99fd
https://commons.datacite.org/doi.org/10.60732/e05d99fd
https://doi.datacite.org/dois/10.60732%2Fe05d99fd
https://doi.org/10.60732/e05d99fd

Cite as: Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P., Kornbluth, M., Molinari, N., Smidt, T. E., and Kozinsky, B. "NequIP NC 2022." ColabFit, 2023. https://doi.org/10.60732/e05d99fd.
For other citation formats, see the DataCite Fabrica page for this dataset.
Calculated Property Types atomic_forces
cauchy_stress
energy
Elements
C (0.09%)
Cu (4.29%)
H (0.09%)
Li (29.82%)
O (36.88%)
P (14.42%)
S (14.42%)
Number of Configurations 56,822
Number of Atoms 7,629,463
Publication Link https://doi.org/10.1038/s41467-022-29939-5
Data Source Link https://doi.org/10.24435/materialscloud:s0-5n
Configuration Sets by Name
Configuration Sets by ID
ColabFit ID DS_4pbhjtu62o2d_0
Downloads 15
Files colabfitspec.json

No uploaded content is transferred in ownership from the original creators to ColabFit. All content is distributed under the license specified by its contributor who has stated that he or she has the authority to share it under the specified license.